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Abstract- The performances of several methods used for the 
computation of the free space Green's function for doubly periodic 
arrays are investigated. We make a careful study of these methods, 
based on accuracy and computing time criteria. We show that none 
of them is able to fulfil both criteria for a large range of parameters 
(position in space, wavelength , periods, .. . ). Fortunately, it is possible 
to retain three complementary algorithms. We combine them in 
order to implement a numerical code that automatically chooses the 
appropriate algorithm depending on the parameters. 
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1. INTRODUCTION 

Three-dimensional electromagnetic problems require huge computing 
resources. One way to go through is to consider periodic structures 
in order to reduce the investigation domain to one cell of the 
structure. Many numerical methods, such as integral methods, require 
the computation of a Green's function . Unfortunately, the more 
straightforward expressions of periodic Green's functions lead to very 
slow converging series. Numerous works have been devoted to the 
Green 's function for one-dimensional gratings. The acceleration of 
the convergence can result from different transformations: Kummer's 
transform [1-3] combined with Poisson's transform [4], numerical non 
linear transforms such as Shanks [5], Levin [6] or p-transform [7]. 
An alternative solution is to use the so-called Lattice Sums [1 , 8]. 
Here, we focus on the efficient computation of the Green 's function for 
doubly periodic arrays (used for instance in crossed grating problems). 
Fewer works concern this problem. At the present time, and in 
collaboration with the Sydrey group (R. McPhedran, N. Nicorovici, 
L. Botten, J. Nixon), we investigate developments of the Lattice Sums 
method. This method has a heavy computational burden to calculate 
the lattice sums, but the calculation of the Green 's function is there 
after quite quick for each field point. In this paper, we combine the 
techniques reported in the earlier studies by Jorgenson et al. [4] and 
by Singh et al. [9]. By this way, we obtain different methods to 
compute this Green's function. None of these methods is optimum 
for all positions of the observation point. A systematic numerical 
study allows us to define the regions of space where each method 
offers the best performances. Compared to the Lattice Sums method, 
the combined method presented in this paper has a computational 
burden which increases linearly with the number of field points. The 
resulting Fortran subroutine (freely downloadable [10]) takes these 
considerations into account in order to choose automatically the most 
efficient method. 

2. EXPRESSION OF THE GREEN'S FUNCTION 

2.1. Spatial Form 

The doubly periodic Green's function G(x, y, z) under investigation is 
the solution verifying an outgoing wave condition of the inhomogeneous 
Helmholtz equation: 
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+00 +00 
= o(z) L L o(x - ndx)o(y - mdy ) exp(iaondx + i/3omdy ) (1) 

n=- oom=- oo 

where k is the wave number (k2 E lR), dx and dy are the periods on 
the x and y axes, ao and /30 are the pseudo-periodicity coefficients. 
In all the paper, we use an orthogonal coordinate system (0, x, y, z). 
Note that in the underlying electromagnetic problem, the harmonic 
fields are represented using a time dependence in exp( -iwt). This 
remark is important for the expression of the outgoing wave condition. 
The spatial form of G(x, y, z) is obtained directly from the elementary 
solution of (.6. + k 2 )g(x, y , z) = o(x, y , z), i.e., the free-space Green's 
function -exp(ikr)/(47rr) , and writes: 

1 +00 +00 exp( ikr ) 
G(x , y, z) = - - '"' '"' nm exp(iaondx + i/3omdy) (2) 47r ~ ~ r 

n=-oo m=-oo nm 

where rnm is the distance from the "source" located at point 
(ndx , mdy, 0) to the observation point (x, y , z ): 

(3) 

2.2. Spectral Form 

From classical calculus using Fourier series, we get from (1) another 
expansion for G (see Appendix A): 

1 ~ ~ exp(iJnm lz l) . . 
G(x, y , z) = 2id d ~ ~ exp(wnx + z/3mY) (4) 

x y n=-oo m=-oo 'Ynm 

where 

27r 
(5) an ao + n d

x 

/3m 
27r 

(6) /30 +md 
y 

2 k 2 _ a 2 - /32 (7) 'Ynm n m 

and choosing 'Ynm or 'Ynm/i as a positive number. 
It is worth noticing that when Iz l is large enough, the series (4) is 

rapidly convergent, since the terms of the series decrease exponentially 
due to the exp(iJnm lzl) factor. As a consequence, we can predict that 
(4) will be numerically efficient as soon as Iz l exceeds a threshold value 
to be determined in Section 3.3. 
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2.3. First Mixed Form Starting from Spatial Form 

In this section, we recall a mixed form series already used in [4J. 
Starting from (2), we get: 

G(x, y, z) = G 1 (x, y, z) + G2(X, y, z) 

with 

1 
Gl(X,y,Z) = - 47r 

(8) 

~ ~ (exP(ikrnm ) eXP(ikrnm) ) (. d .(3 d) (9) . ~ ~ - _ exp 'laon x + 'I, om y 

n=-oom=-oo rnm rnm 

and 

1 ~ ~ exp(ikrnm) 
G2(X, y, z) = -- ~ ~ _ exp(iaondx + i(3omdy ) 

47r n=-oo m=-oo rnm 
(10) 

where 

rnm = V(x - ndx)2 + (y - mdy)2 + (Izl + ujdxdy) 2 (11) 

For small values of the arbitrary positive parameter u, G 1 (x, y, z) 
converges quickly, due to the fact that rnm and rnm have the same 
asymptotic behavior. Moreover, the equality between identities (2) 
and (4) enables us to transform the second summation in the spectral 
domain: 

1 
G2(x, y, z) = 2id

x
dy 

~ ~ exp(hnm(lzl+uJdxdy )) (. '(3) 
. ~ ~ exp zanx + z mY 
n=-oo m=-oo 'Ynm 

(12) 

Note that the parameter u gives a z-translation which, following the 
remark of Section 2.2, enables us to get a fast convergence of G2 if u 
is large enough. Of course, in this case, the convergence of G1 will be 
slow. The optimization of this parameter will be discussed in Section 
3.2. 

2.4. Second Mixed Form Starting from Spectral Form 

Here again, we recall one mixed form series already used in [9J. The 
Kummer's transform used in the previous section can be applied to the 
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spectral form (4), giving: 

G(x, y, z) = G3 (x, y, z) + G4 (x, y, z) (13) 

with 

and 

1 ~ ~ exp(i'Ynm lz l) . . 
G4 (x, y, z) = 2id d ~ ~ - exp(wnx+~,8mY) (15) 

x Y n=-oo m=-oo 'Ynm 

putting 
,:y2 = _v2 _ a 2 _ (32 Inm n m (16) 

where v is a positive parameter and 'Ynm/i is a positive number. 
Again, the equality between the spatial and the spectral forms (2) 

and (4), combined with the similarity between (7) and (16) allows us 
to transform (15) in the spatial domain: 

1 ~ ~ exp( - vrnm) 
G4 (x, y, z) = -- ~ ~ exp(iaondx + i,8omdy) 

4~ r n=-oom=-oo nm 
(17) 

The convergence of G4 is due to exp( -vrnm)/rnm and is faster as v is 
larger , but G3 converges more rapidly as v is smaller. As a consequence, 
v should be numerically optimized (see Section 3.2). 

3. NUMERICAL STUDY 

We have performed numerous tests with various expressions of the 
Green's functions. It emerges that our goal can be achieved by mean 
of the three series given by 

• Eq. (4), 
• Eq. (8), using Eq. (9) and Eq. (12), 
• Eq. (13), using Eq. (14) and Eq. (17). 
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3.1. Shanks' Transform 

Moreover, on each of the series (9), (12), (14) and (17), we use 
the Shanks' transform [11 , 12J in order to accelerate numerically the 
convergence. Note that series (4) does not take advantage of Shanks' 
transform in the range of parameters where this series will be used. In 
comparison with the method proposed by Jorgenson et al [4] (which is 
similar to the use of (9) and (12)), we have added the application of 
Shanks' transform, and we have checked that significant improvements 
are obtained in all circumstances. Because of the double summation 
of the series which writes under the general form: 

+00 
S= L (18) 

n=-oom=-oo 

we must define the way we use for the truncation. Let us call: 

(19) 
n=-Nm=-N 

This simple process is interesting since the computation of SN+1 from 
SN takes advantage of all the previous computations. Of course, it 
could be questionable in the case where dx and dy are very different. 
Let us recall the principle of the Shanks' transform. Assuming that 
So, Sl ... SN+1 . are known, we can compute the p-order Shanks' 
transform by: 

with initial conditions 

(21) 

The successive values of ep(SN), when p is an even number, are 
estimations of S, and, in our case, converge faster than the initial 
partial sums S N. In order to stop the numerical summations when a 
given relative error E is reached, we use the following criterion: 

(22) 

Note that this convergence test differs from the one used by Singh 
et al. [9], and is more restrictive. The objective is to avoid that the 
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procedure stops before the required error is obtained, due to a slow 
convergence. Moreover, we enforce condition (22) to be verified for at 
least four consecutive values of p . For clarity, we will distinguish the 
error £ we wish for, and the obtained error €. 

3.2. Optimization of the Parameters u and v 

As mentioned in Sections 2.3 and 2.4, the parameters u and v must 
be optimized. From our numerical studies, it emerges that quite 
good performances are obtained when u depends on the parameters 
A = 27r / k, dx , dy and the error £ following the empirical rule: 

u = (0 .005 log £ + 0.065) (k exp ( -0.135 k) ) + 0.04 ,(23) 

In the same way, we found an empirical rule for the determination of 
v: 

0.3 log £ + 3.2 
v = ---=---.,....,..-

min(dx , dy ) 
(24) 

These rules are systematically used in all the following. 

3.3. Numerical Comparison of the Methods 

The goal is to compute the Green's function within the required error 
i. Among the methods fulfilling this criterion, we select the faster 
one. Moreover, in order to give to the final routine the largest range 
of validity, we combine the different methods to cover all the values of 
x, y, z and a wide range of values for A, ao, /30, dx , dy and £ . Of 
course, we cannot illustrate all the different situations. For clarity, we 
have used a graphic representation that gives a synthetic information. 

Figure 1 shows maps of the error € obtained for Izl varying from 
10-6 to 1. Due to the pseudo-periodicity of the Green's function , it 
is sufficient to compute G in the first cell, i.e. , x E [-dx /2, dx /2] and 
y E [-dy /2, dy /2]. In the left-hand side of the map, we fix y = 0 
and vary x between -dx /2 and 0, whereas in the right-hand side, 
we take y = x, and vary x between 0 and dx /2. The other useful 
parameters are A = dx = dy = 1, ao = ksin(7r/ 4) , /30 = 0 and 
£ = 10-6 . Figure 1a is computed using Eq. (8), Figure 1 b is computed 
using Eq. (13) and Figure 1c is computed using our numerical code, 
which automatically chooses the proper method. In the upper band 
on Fig. 1c (i .e., log Izl > -1.15 above the white line) , the spectral 
form (Eq. (4)) is used. We have not shown the entire map obtained 
with this method. From the remark in Section 2.2, it is clear that the 
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Figure 1. Error maps . la: from Eq. (8). Ib: from Eq. (13). lc: from 
our code. Shanks' transformation is applied on series (8) and (13). If 
£ > € , the legends show a hatched region whose lower limit is equal 
to €, and whose upper limit is the maximum error £ among all the 
calculations of the map. 
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method is efficient for large values of Izl only. In Figure 1b, we notice 
some hatched regions where € > €, which means that the accuracy 
we asked for has not been obtained. Note that the maximum value 
of € in the map is equal to 2.4 x 10-6 . It is also worth noticing that 
the Green's function behaves differently on the lines y = 0 (left-hand 
side) and y = x (right-hand side). This asymmetry does not appear 
on Fig. 1a. Coming back to Fig. 1c, we note that Eq. (8) is used in 
the central white rectangle only. If we consider the accuracy criterion 
only, it could be thought that Eq. (13) gives better results in the upper 
part, and Eq. (8) in the right lower part. In fact, we must also take 
into account the computation time in the selection of the method. 

Figure 2 gives the time (in seconds) used to compute each value 
of G. The computations are done on a PC with 350 MHz CPU and 
the parameters are the same as in Fig. 1. From the analysis of Fig. 
1 and 2, it appears that the numerical code gives a good compromise 
between time and accuracy. For instance, it is clear that in the upper 
band (log Izl > -1.15), the spectral form (4) is faster than (13). On 
the right lower side of Fig. 1c, Eq. (13) is used because it is faster than 
Eq. (8) (see Figs. 2a and 2b). However, we can see that a few hatched 
points do not satisfy the accuracy criterion, but the maximum error 
upon these points remains in acceptable limits (€ = 1.6 X 10-6 , not so 
far from € = 10-6). 

In fact, the convergence of (13) becomes slower (which causes 
erroneous results, since our stopping criterion (22) becomes unsuited) 
when three conditions are simultaneously verified: 

• first , if x/dx get close to y/dy (Le., the projection of the 
observation point on the x, y plane is close to the diagonals of 
the first cell). In the present case where dx = dy , the condition 
reduces to x ~ y, 

• second, if € becomes very small. The quantitative limit taken by 
our code is 5 x 10-7 , 

• third, if Izl becomes very small. The quantitative limit taken by 
our code is 0.07max(dx , dy), 

Figures 3a-c illustrate this behavior. They show error maps in the 
plane z = 0, for the same parameters as previously, except € = 10-8 . 

From Figure 3b, we see that the slow convergence of (13) induces 
erroneous results that are due to the fact that the criterion used to stop 
the numerical summations fails. In this case, Fig. 3c shows that our 
numerical code uses Eq. (8), thus giving more importance to accuracy 
than to quickness. Note that in the case of Figures 1 and 2 (€ = 10-6 ) 

the problem is not so critical, and Eq. (13) can be used for x = y. 
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Figure 3. Error maps versus x and y, for z = O. 3a: from Eq. (8). 3b: 
from Eq. (13). 3c: from our code. Shanks' transformation is applied 
on series (8) and (13). If € > E , the legends show a hatched region 
whose lower limit is equal to E, and whose upper limit is the maximum 
error € among all the calculations of the map. 



216 

o.S 

(4) 

(13) 

Outside central 
rectangular zone 
and not too close 
to diagonals, i.e. : 

I~ or I~ > O.OS 

and 

II:J-~ 1>0.03 

Izi 

!om 

0.007 

(8) (8) 

Central rectangular 
zone, i.e. : 

I~ :50.0S 

and 

I~ :50.0S 

Guerin, Enoch, and Tayeb 

(4) 

(13) 

(13) if E~SxI0-7 

(8) if E<SxlO-7 

o.S I:JI~ 
Near diagonals, i.e : 

II~-I~ I :50.03 

Figure 4. Schematic representation of the methods used by our 
numerical code. Shanks' transformation is applied on series (8) and 
(13). 

Figure 4 clarifies the choices taken by our numerical code, 
depending on the different parameters. The right-hand side of the 
horizontal axis represents regions near the diagonals Ixjdxl = Iyjdyl. 
The left-hand side corresponds to points far from these diagonals. 

In Figure 5a, we plot the percentage of points that do not meet 
the accuracy criterion, i.e., € > e. The Green's function is computed 
over 10,000 points equally spaced in x and y inside the first cell, and 
logarithmically spaced from z = 10-6 to z = 1. The parameters remain 
the same as previously. The worse results are obtained when using 
Eq. (8) without Shanks' transform. This method is very close to the 
one proposed in [4]. Using (13), Shanks' transform gives good results 
as long as e > 10-6 , but the number of false results increases as e 
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Figure 5. Comparison between the different methods over 10,000 
points. 5a: percentage of inaccurate results versus E. 5b: computation 
time. 
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decreases, due to the slow convergence near the diagonals. The more 
robust method is given by Eq. (8) with Shanks' transform, but it is 
not the faster, as it can be seen on Figure 5b. From this last point of 
view, our code offers the best performances. 

4. CONCLUSION 

Different expressions of the doubly periodic Green's function have been 
sketched out . From the spatial form, a spectral and two mixed forms 
have been derived. Further numerical acceleration has been obtained 
by use of the Shanks' transform. The efficiency of these different 
methods has been compared. Each of them offers good performances · 
for a limited range of parameters. Moreover, it has been shown that it 
is possible to combine these different methods in order to develop an 
efficient numerical algorithm. This paper has been written in order to 
give all the useful details for the implementation of a numerical code 
similar to the one we have developed. Our Fortran version is freely 
downloadable on the Internet [10] . 

This work is part of a study dealing with the optimization of 
antennas involving the specific properties of photonic crystals, but it 
can be used in many other areas. 

APPENDIX 

The solution of Eq. (1) is a doubly pseudo-periodic function that can 
be written in the form of a generalized Fourier series: 

+00 +00 
G(x, y, z) = :L :L Gnm(z) exp(ianx + if3mY) (AI) 

n=-oom=-oo 

Noting that G(x, y, z) is infinitely differentiable for z > 0 and z < 0, 
introducing (AI) in (1), and taking the derivatives in the sense of 
distributions yields: 

+00 +00 
= o(z) :L :L o(x - ndx)o(y - mdy ) exp(iaox + if3oy) (A2) 

n = -oom=-oo 
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where {~} denotes the second derivative of f without precaution, 

aU) the jump of f for Z = 0, and f/ the derivative of the Dirac's 
distribution. Note that in the right-hand member of (A2) we have 
replaced ndx by x and mdy by y. This is allowed by the presence of 
the factors c5(x - ndx ) and c5(y - mdy). Using the well known identity: 

(A3) 

Eq. (A2) writes: 

+00 +00 c5 (z ) . . L L IT exp( WnX + 2!3mY) 
n=-oo m=-oo x y 

(A4) 

which means that for each (n, m): 

'Y~mGnm + { 8~~;m } + a (8~:m ) c5(z) + a(Gnm )c5'(z) = dx1d
y 

c5(z) 

(A5) 
giving us the three following relations: 

a(Gnm ) = ° 
(

8Gnm ) 1 
a ----a;- = dxdy 

2 {8
2
Gnm} 'YnmGnm + 8z2 = ° 

(A6) 

(A7) 

(A8) 

Equation (A6) means that Gnm(z) is continuous in z = 0, whereas 
from (A8) we can write: 

for z > 0, Gnm = Anm exp( irnmz) + Bnm exp( - irnmz) 
for Z < 0, Gnm = Cnm exp(irnmz) + Dnm exp( -irnmz) 

(A9) 
(AlO) 

The outgoing wave condition imposes that Bnm = Cnm = 0, and the 
continuity of Gnm gives Anm = Dnm. Finally, (A 7) fixes the value: 

1 
Anm = Dnm = 2 ·d d 

2 x y'Ynm 
(All) 
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Thus the expression of the Green 's function is: 

1 ~ ~ exp(i-ynm lzl) . . 
G(x, y, z) = 2id d ~ ~ exp(u:¥nx + z,BmY) 

x Y n=-oo m=-oo Tnm 

(A12) 
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