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Abstract  

The performances of several methods used for the computation of the free space Green’s function for doubly periodic arrays are investigated. We make a careful study of these methods, based on accuracy and computing time criteria. We show that none of them is able to fulfil both criteria for a large range of parameters (position in space, wavelength, periods,…). Fortunately, it is possible to retain three complementary algorithms. We combine them in order to implement a numerical code that automatically chooses the appropriate algorithm depending on the parameters.

1. Introduction

Three-dimensional electromagnetic problems require huge computing resources. One way  to go through is to consider periodic structures in order to reduce the investigation domain to one cell of the structure. Many numerical methods, such as integral methods, require the computation of a Green’s function. Unfortunately, the more straightforward expressions of periodic Green’s functions lead to very slow converging series. Numerous works have been devoted to the Green’s function for one-dimensional gratings. The acceleration of the convergence can result from different transformations: Kummer’s transform [1-3] combined with Poisson’s transform [4], numerical non linear transforms such as Shanks [5], Levin [6] or (-transform [7]. An alternative solution is to use the so-called Lattice Sums [1,8]. In this paper, we focus on the efficient computation of the Green’s function for doubly periodic arrays (used for instance in crossed grating problems). Fewer works concern this problem. We combine the techniques reported in the earlier studies by Jorgenson et al [4] and by Singh et al [9]. By this way, we obtain different methods to compute this Green’s function. None of these methods is optimum for all positions of the observation point. A systematic numerical study allows us to define the regions of space where each method offers the best performances. The resulting Fortran subroutine (freely downloadable [10]) takes these considerations into account in order to choose automatically the most efficient method. 

2. Expression of the Green’s function
2.1. Spatial Form

The doubly periodic Green’s function G(x,y,z) under investigation is the solution verifying an outgoing wave condition of the inhomogeneous Helmholtz equation:
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where k is the wave number (
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 are the pseudo-periodicity coefficients. In all the paper, we use an orthogonal coordinate system (O,x,y,z). Note that in the underlying electromagnetic problem, the harmonic fields are represented using a time dependence in 
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. This remark is important for the expression of the outgoing wave condition. The spatial form of G(x,y,z) is obtained directly from the elementary solution of 
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where 
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is the distance from the “source” located at point (n
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2.2 Spectral Form

From classical calculus using Fourier series, we get from (1) another expansion for G (see Appendix A):
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where
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and choosing 
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 or 
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as a positive number.

It is worth noticing that when |z| is large enough, the series (4) is rapidly convergent, since the terms of the series decrease exponentially due to the 
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 factor. As a consequence, we can predict that (4) will be numerically efficient as soon as |z| exceeds a threshold value to be determined in section 3.3.

2.3. First mixed form starting from spatial form

In this section, we recall a mixed form series already used in [4]. Starting from (2), we get:
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with
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and
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where
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For small values of the arbitrary positive parameter u , 
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 have the same asymptotic behavior. Moreover, the equality between identities (2) and (4) enables us to transform the second summation in the spectral domain:
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Note that the parameter u gives a z-translation which, following the remark of section 2.2, enables us to get a fast convergence of 
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 if u is large enough. Of course, in this case, the convergence of  
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 will be slow. The optimization of this parameter will be discussed in section 3.2.

2.4. Second mixed form starting from spectral form 

Here again, we recall one mixed form series already used in [9]. The Kummer’s transform used in the previous section can be applied to the spectral form (4), giving:
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with
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and
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putting
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where v is a positive parameter and 
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Again, the equality between the spatial and the spectral forms (2) and (4), combined with the similarity between (7) and (16) allows us to transform (15) in the spatial domain:
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The convergence of 
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[image: image40.wmf]3

G

 converges more rapidly as v is smaller. As a consequence, v should be numerically optimized (see section 3.2).

3. Numerical study

We have performed numerous tests with various expressions of the Green’s functions. It emerges that our goal can be achieved by mean of the three series given by

· Eq. (4),

· Eq. (8), using Eq. (9) and Eq. (12), 

· Eq. (13), using Eq. (14) and Eq. (17).

3.1. Shanks’ transform

Moreover, on each of the series (9), (12), (14) and (17), we use the Shanks’ transform [11,12] in order to accelerate numerically the convergence. Note that series (4) does not take advantage of Shanks’ transform in the range of parameters where this series will be used. In comparison with the method proposed by Jorgenson et al [4] (which is similar to the use of (9) and (12) ), we have added the application of Shanks’ transform, and we have checked that significant improvements are obtained in all circumstances. Because of the double summation of the series which writes under the general form:
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we must define the way we use for the truncation. Let us call:
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This simple process is interesting since the computation of 
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 are known, we can compute the p-order Shanks' transform by:
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with initial conditions
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The successive values of 
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, when p is an even number, are estimations of S, and, in our case, converge faster than the initial partial sums
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. In order to stop the numerical summations when a given relative error ( is reached, we use the following criterion:
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Note that this convergence test differs from the one used by Singh et al. [9], and is more restrictive. The objective is to avoid that the procedure stops before the required error is obtained, due to a slow convergence. Moreover, we enforce condition (22) to be verified for at least four consecutive values of p. For clarity, we will distinguish the error ( we wish for, and the obtained error
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3.2. Optimization of the parameters u and v

As mentioned in sections 2.3 and 2.4, the parameters u and v must be optimized. From our numerical studies, it emerges that quite good performances are obtained when u depends on the parameters 
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In the same way, we found an empirical rule for the determination of v:
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These rules are systematically used in all the following.

3.3. Numerical comparison of the methods 

The goal is to compute the Green’s function within the required error (. Among the methods fulfilling this criterion, we select the faster one. Moreover, in order to give to the final routine the largest range of validity, we combine the different methods to cover all the values of x, y, z and a wide range of values for (, 
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and (. Of course, we cannot illustrate all the different situations. For clarity, we have used a graphic representation that gives a synthetic information. 


Figure 1 shows maps of the error 
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. Figure 1a is computed using Eq. (8), figure 1b is computed using Eq. (13) and figure 1c is computed using our numerical code, which automatically chooses the proper method. In the upper band on fig. 1c (i.e. 
[image: image79.wmf]15

.

1

log

-

>

z

, above the white line), the spectral form (Eq. (4)) is used. We have not shown the entire map obtained with this method. From the remark in section 2.2, it is clear that the method is efficient for large values of 
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 only. In figure 1b, we notice some hatched regions where 
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 (right-hand side). This asymmetry does not appear on fig. 1a. Coming back to fig. 1c, we note that Eq.(8) is used in the central white rectangle only. If we consider the accuracy criterion only, it could be thought that Eq. (13) gives better results in the upper part, and Eq.(8) in the right lower part. In fact, we must also take into account the computation time in the selection of the method.


Figure 2 gives the time (in seconds) used to compute each value of G. The computations are done on a PC with 350 MHz CPU and the parameters are the same as in fig. 1. From the analysis of fig. 1 and 2, it appears that the numerical code gives a good compromise between time and accuracy. For instance, it is clear that in the upper band (
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In fact, the convergence of (13) becomes slower (which causes erroneous results, since our stopping criterion (22) becomes unsuited) when three conditions are simultaneously verified:

· first, if 
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Figures 3a-c illustrate this behavior. They show error maps in the plane 
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. From figure 3b, we see that the slow convergence of (13) induces erroneous results that are due to the fact that the criterion used to stop the numerical summations fails. In this case, fig. 3c shows that our numerical code uses Eq. (8), thus giving more importance to accuracy than to quickness. Note that in the case of figures 1 and 2 (
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Figure 4 clarifies the choices taken by our numerical code, depending on the different parameters. The right-hand side of the horizontal axis represents regions near the diagonals 
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In figure 5a, we plot the percentage of points that do not meet the accuracy criterion, i.e. 
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. The Green’s function is computed over 10,000 points equally spaced in x and y inside the first cell, and logarithmically spaced from 
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. The parameters remain the same as previously. The worse results are obtained when using Eq. (8) without Shanks’ transform. This method is very close to the one proposed in [4]. Using (13), Shanks’ transform gives good results as long as 
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never exceeds  2. It should be noticed that our code changes the number of consecutive tests (eq. (22)) depending on 
[image: image106.wmf]e

. It explains why the percentage of inaccurate results can decrease even when 
[image: image107.wmf]e

decreases. The more robust method is given by Eq. (8) with Shanks' transform, but it is not the faster, as it can be seen on figure 5b. From this last point of view, our code offers the best performances.

4. Conclusion

Different expressions of the doubly periodic Green’s function have been sketched out. From the spatial form, a spectral and two mixed forms have been derived. Further numerical acceleration has been obtained by use of the Shanks’ transform. The efficiency of these different methods has been compared. Each of them offers good performances for a limited range of parameters. Moreover, it has been shown that it is possible to combine these different methods in order to develop an efficient numerical algorithm. This paper has been written in order to give all the useful details for the implementation of a numerical code similar to the one we have developed. Our Fortran version is freely downloadable on the Internet [10].


This work is part of a study dealing with the optimization of antennas involving the specific properties of photonic crystals, but it can be used in many other areas.
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Appendix

The solution of Eq. (1) is a doubly pseudo-periodic function that can be written in the form of a generalized Fourier series:
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Noting that 
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 is infinitely differentiable for z > 0 and z < 0, introducing (A1) in (1), and taking the derivatives in the sense of distributions yields:
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where 
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Eq. (A2) writes:
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which means that for each (n,m):
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giving us the three following relations:
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Equation (A6) means that 
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The outgoing wave condition imposes that 
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Thus the expression of the Green’s function is:
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Figure captions

Figure 1: Error maps. 1a: from Eq. (8). 1b: from Eq. (13). 1c: from our code. Shanks’ transformation is applied on series (8) and (13). If 
[image: image137.wmf]e

>

e

~

, the legends show a hatched region whose lower limit is equal to , and whose upper limit is the maximum error 
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 among all the calculations of the map.

Figure 2: Computation time. 1a: from Eq. (8) . 1b: from Eq. (13). 1c: from our code. Shanks’ transformation is applied on series (8) and (13). Note that some small differences in the computation time for the same point appear (for instance in the central region between maps 2a and 2c) due to uncertainty on the time measurement.

Figure 3: Error maps versus x and y, for
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. 3a: from Eq. (8). 3b: from Eq. (13). 3c: from our code. Shanks’ transformation is applied on series (8) and (13). If 
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, the legends show a hatched region whose lower limit is equal to , and whose upper limit is the maximum error 
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 among all the calculations of the map.

Figure 4: Schematic representation of the methods used by our numerical code.

Shanks’ transformation is applied on series (8) and (13).

Figure 5: Comparison between the different methods over 10,000 points.

5a: percentage of inaccurate results versus (. 5b: computation time.
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Figure 1: Error maps. 1a: from Eq. (8). 1b: from Eq. (13). 1c: from our code. Shanks’ transformation is applied on series (8) and (13). If 
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Figure 2: Computation time. 1a: from Eq. (8) . 1b: from Eq. (13). 1c: from our code. Shanks’ transformation is applied on series (8) and (13). Note that some small differences in the computation time for the same point appear (for instance in the central region between maps 2a and 2c) due to uncertainty on the time measurement.
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Figure 4: Schematic representation of the methods used by our numerical code.

Shanks’ transformation is applied on series (8) and (13).
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Figure 5: Comparison between the different methods over 10,000 points.

5a: percentage of inaccurate results versus (. 5b: computation time.
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